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produced in the CD4-H2 experiments is less than a 
third of the decrease in CD+.) 

The rate constants for reaction of CH3+, CH2
+, and 

C H + with D2 are about one-fourth of the rate con
stants for the reaction of these ions with CH4.4 If the 
rate constants are proportional to (a/y.)1/', the polariz-
ability of the molecule divided by the reduced mass of 
the complex,11 then the rate constant for the reaction of 
CH2

+ with H2 would be equal to the rate constant for 
CH2

+ with CH4. (The differences in reduced mass 
balance the differences in polarizability.) The ob
served ratio of rate constants is very different from this 
calculated value and is actually about the same as the 
ratio of the polarizabilities of H2 and CH4. 

Pratt and Wolfgang21 in their paper suggest exchange 
between CH6

+ and T2 to give CH4T + followed by proton 
exchange with CH4 to give the neutral CH3T. Accord-

(11) H. Eyring. J. O. Hirschfelder, and H. S. Taylor, / . Chem. Phys., 1, 
479 (1936). 

Introduction 
One often accepts or rejects a proposed reaction 

mechanism by comparing experimental concentration-
time data with those predicted by that proposed mech
anism. It is easy enough to write down differential 
equations governing the model mechanism, but un
fortunately their integration to give the desired con
centration-time curves is usually difficult. In even 
the relatively simple case 

A — B+C %— D (1) 
\ *3 / 

Pearson, King, and Langer2 have shown that integra
tion of the rate equations 

d[A]/dt = -Ai[A] - A3[A] 

d[B]/d( = d[C]/di = Ai[A] - A2[B][C] (2) 

d[D]/d« = A3[A] + A2[B][C] 

gives 

[B1. [A]| fc. (r/JC)v.^c»vgr) - ^ 1 - ( W g 
*i + *a J0(2iVrK) + i&W{2iVrK) 

(3) 

where 

T = e-<*i+*,)i( K = AiA2[A]„/(Ai + A3)
2, 

/3 = U1WiVK)/ Hil(2iVK) 
and J's and H's are Bessel functions. For mechanisms 
even slightly more complex, integration in closed 
analytical form is impossible. 

(1) Presented in part at the Southeastern Regional Meeting of the 
American Chemical Society, Gatlinburg, Tenn., November, 1962, 

(2) R. G. Pearson, L. C. King, and S. H. Langer, / . Am. Chem. Soc., 73, 
4H9 (1951). 

ing to our data this exchange reaction of CH5
+ with D2 

does not occur or if it does occur its rate constant must 
be less than 1O-12 cc./molecule-sec. Similarly, direct 
reaction between CH4

+ and D2 to give CH4D+ was ob
served to have a very small cross section, similar to the 
direct atom-exchange reaction. Some CH4T+ could 
presumably be formed by the reaction of T3

+ with CH4 
which we observed between D3

+ and H3
+ and CH4, 

but we found that very rapid exchange occurs in CH3
 + 

and its product C2H5
+ as did Wexler2b (Wexler did not 

observe the disappearance of CH3
+ and formation of 

CH2D+ from the reaction of CH3
+ with D2 as we re

port; he merely observed the presence of the sub
stituted ethyl ions.) It seems reasonable to us that 
the exchange should proceed through the methyl and 
ethyl ions and their neutralization products. 

Acknowledgments.—We are indebted to Mr. W. C. 
Gieger for performing these experiments with his ac
customed skill. 

A method is therefore presented here which avoids 
this integration. A digital computer is used to set up a 
statistical (i.e., Monte Carlo3) model of the reacting 
system from which concentration-time curves are ob
tained directly. This is described first in general to 
show the scope of the method and then in detail for 
mechanism 1. 

Monte Carlo Integration of a First-Order Rate Equa
tion.—Consider, to take an example, the uncatalyzed 
thermal decomposition of H2O2. Here the first-order 
rate equation 

d [H2O2] /At = A[H2O2] 

can easily be integrated to give 

log [H2O2] = (a constant) — ht 

To construct a Monte Carlo model of this reaction, a por
tion of computer storage is set aside to represent the re
action flask, and an H2O2 molecule is represented in the 
computer by the digit 1. Decomposition is indicated by 
replacing these l's by O's. To start the reaction, the 
flask is filled with H2O2 by loading l's into the com
puter storage. Suppose there are 1000 l's in storage at 
the start of the reaction. Each is in a particular loca
tion and hence each can be distinguished as the Oth, 1st, 
. . . 999th molecule. The remaining part of storage is 
used to generate a random number between 0 and 999. 
If the number 215 (say) is generated, the 215th H2O2 
molecule is reacted by replacing the 1 representing it by 
a 0. Another random number is generated and the re
action continued. If 215 is generated again, a 0 will be 
replaced by another 0 giving in effect no reaction. This 
is repeated some specified number of times; then H2O2 
is "titrated" by counting the number of l's remaining 

(3) A. S. Householder, G. E. Forsythe, and H. H. Germond, "Monte Carlo 
Method," National Bureau of Standards, Applied Mathematics Series 12 
(1951). 
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The difficult problem of analytic integration of rate equations can be circumvented by constructing a digital 
computer model of the reacting system. Concentration-time curves, accurate to 1 or 2%, are obtained directly 
from the model for all components of the system. 
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Fig. 1.—Three Monte Carlo models of a first-order reaction show
ing the effect of model size on accuracy. 

in storage. The entire process is repeated until the re
action is as complete as required. 

To see that this computer model does correspond to a 
first-order reaction, compare the rate of decomposition 
of H2O2 with the rate of disappearance of l's. In a 
first-order reaction each molecule has a constant prob
ability P of decomposing in unit time. The number of 
H2O2 molecules decomposing in time M is therefore 
nPAt, where n is the number of molecules present. In 
the computer model each location containing a 1 or a O 
has a constant probability P' of being selected in unit 
time. The number of l's replaced by O's in At is there
fore n'P'&t, where n' is the number of 1 's present. The 
two systems are therefore analogous, and a plot of the 
logarithm of number of l's vs. time does give the ex
pected straight line (Fig. 1). 

Notice that the computer model does not require 
information about the structure of the reacting mole
cules nor about the nature of the transition state. 

The more l's used to represent the reacting system, 
the more accurate are the results, but the greater are the 
computing time and storage needed. Figure 1 shows 
the accuracy obtained using 100, 1000, and 10,000 l's. 
To compare the three, the time unit varies and repre
sents, respectively, the time required to generate 2.5, 25, 
and 250 random numbers. The accuracy with 10,000 
l's seems sufficient for most experimental rate data, and 
the 45 min. of computing time required on an IBM 650 
is reasonable. 

Extension to Complex Reactions.—Any reaction 
mechanism, no matter how complex, can add only 
three kinds of complication to the simple first-order 
process: (a) higher order, (b) competing reactions, (c) 
sequential reactions. 

Higher Order.—To represent the second-order re
action 

A + B —> products (4) 

Z 2 
0 

100 200 300 
TIME (arbitrary units). 

Fig. 2.—Monte Carlo model of two sequential first-order reactions 
with ki/k, = 7. 

two portions of storage are set aside. An A molecule is 
represented by a 1 in the first portion; a B by a 1 in the 
second. To begin the reaction, the ratio of l's in part 
A to l's in part B is set equal to the ratio of initial con
centrations of A and B. Two random numbers are 
generated, one specifying an A and a B location. If 
both these locations contain l's, a reaction is indicated 
by replacing both by O's. If one or both already con
tain O's, no reaction occurs. After a specified number 
of random numbers are generated, A and B are titrated 
by counting the 1 's in the two sections of storage. 

An alternative, sometimes more convenient, is the 
use of a single portion of storage in which A is repre
sented by 1 and B by 2. 

A reaction, second order in the single component A, 
can be simulated by randomly picking two A locations 
instead of one A and one B location. Extension to 
higher orders is obvious; the number of storage loca
tions that must be chosen randomly each time the re
action is tried equals the order of the reaction. Reac
tion take place only if all locations chosen contain un-
reacted molecules. 

Competing Reactions.—-If one wishes to follow the 
concentration of all three components in the reaction 

ki fei 

C -<. A —> B (5) 

three portions of storage are used. The A portion is 
filled with l's and the B and C portions with O's {i.e., if 
the concentrations of B and C are initially 0). Random 
numbers are generated to represent the branch A -*• B. 
Each time a reaction takes place a 1 is replaced by a 0 
in the A section and a 0 by a 1 in the B section. The 
branch A -*• C is treated similarly. The ratio of num
ber of random numbers representing A -*• B to that 
representing A -*• C must equal the ratio ki/kz. 

Again there is the alternative of using one portion of 
storage and different digits to represent each component 
and again generalization is obvious. 

Sequential Reactions.—Sequential reactions such as 

A > B >- C (6) 

are simulated much like competing reactions. Three 
sections representing A, B, and C are filled with l's to 
represent correct initial concentrations, and the reac
tion is run by generating two sets of random numbers in 
the ratio k\/ki. Figure 2 compares the Monte Carlo 
model of (6) for ki/kt = 7 to the exact result obtained 
by integrating the rate equations. Two components in 
equilibrium might be considered a special case of (6). 
Monte Carlo results for such a system are shown in 

A-iSi^BJi2_c 
Exact, by in tegrat ion 0 0 0 " 

Monte Car lo model -
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Fig. 3. Variations in the curves after about 150 time 
units give an idea of the errors to be expected from 
the model. 

TIME ( a r b i t r a r y units). 

Fig. 3.—Monte Carlo model of two components in equilibrium 
with K = kjki = 4/6. 

Any combination of these three kinds of processes, 
and hence any chemical reaction, can be represented by 
a Monte Carlo model either by allowing one storage 
section for each component or by representing each by a 
different digit in a single section. 

Details 

We return now to (IJ and consider setting up a Monte 
Carlo model of Pearson's2 specific case: [A]0 = 4.25 X 
10-3 M, [B]0 = [C]0 = [D]0 = 0, h = 0.0044 mm.-' , 
h = 2.96 (min. mole/1.)"1, k* = 0.0021 min."1. 

Initial Concentrations,—Let the first 1000 10-digit 
words in computer storage represent the reaction flask. 
Each word could then be used to represent one molecule, 
but 10 times as many molecules can be put into the 
same space by using each digit instead. Picking out a 
molecule then requires two random numbers. A 3-digit 
random number (000 to 999) picks the word, and a 
1-digit random number (0 to 9) specifies the digit 
within the word. 

If A is represented by 1, B by 2, C by 3, and D by 4, 
the initial concentrations can be simulated by putting 
4250 l's anywhere in the first 1000 words of storage. 
Any number of l's could be used, but since [A]0 = 
4.25 X 10~3 M, this make it especially easy to convert 
from number of l's to molarity. The remaining digits 
are set equal to 0. 

Random Number Generation.—Older methods such 
as squaring a number and taking the central digits 
from the product are unreliable. The newer Power 
Residue Method has been shown to generate long 
nonrepeating sequences which have so far passed all 
tests for randomness.'* Reference 4 gives a number 
theory justification of the method and also recipes for 
use without understanding the justification. The 10 
low-order digits (i.e., the right-hand half) from the 20-
digit product of a 10-digit X by a 10-digit U0 form the 
random number Ui. The low-order digits of XUi are 
then U2; those of XU2 are U3 and so on. The starting 
numbers X = 0000100003 and U0 = 0123456789 were 
chosen according to prescription and give a nonrepeat
ing sequence of 5 X 108 10-digit random numbers. 
None of our Monte Carlo models have yet required 
more than 8 X 105 of these. Random numbers with 
fewer digits may be obtained by taking a high-order 
portion of the 10-digit random number. 

(4) Anonymous, Reference Manual on Random Number Generation and 
Testing, International Business Machines Corporation, 1959. 

Rate Constants.—Mechanism 1 contains the three 
branches A-* B 4- C, B + C-» D, and A-* D. Denote 
these as the first, second, and third branches, in that 
order. Each random number generated is used to try 
one of the three. Whether or not a particular try leads 
to reaction depends upon what is in the location speci
fied by the random number. Unlike (5) or (6), all 
branches are not of the same order, and therefore the 
number of times each is tried is not simply proportional 
to its rate constant. Let us determine first the relative 
number of times each branch should be tried and then 
how to achieve this with the computer model. 

To choose a branch, the computer makes two de
cisions : first whether to do branch 1 or not; then if not, 
whether to do branch 3 or branch 2. It is therefore 
convenient to work with the ratios R = N1Z[N2 4- JV3) 
and R' = N3ZN2, where Ni is the number of times 
branch i is tried. If the model is to represent (1) cor
rectly, it must be that 

rate of formation of D from A _ 
rate of formation of D from B + C 

rate of formation of 4's from l's .„ . 
. (7a) 

rate of formation of 4's from 2's and 3's 
or 

MA] = JVaIl] = R, J iL .-. 
MB] [C] AM2][3] [2] [3] ('D> 

and 

rate of formation of B from A _ 
total rate of formation of D 

rate of formation of 2's from l's 
total rate of formation of 4's 

or 

MA] = M[ I ] R(R' + I)[I] 
A1[A] + A2[B][C] N3[I] + 7V2[2][3] R'[l] + [2] [3] 

(8b) 

where [1 ] = the ratio of number of l's representing A to 
the total number of digits representing the reaction 
flask; [1] might be thought of as the concentration of 
l's in the model; [2] and [3] are defined analogously. 
Other similar relations could be written down, but these 
two are sufficient to fix R and R'. It is also necessary 
that the concentration of a digit be proportional to the 
concentration of the molecule it represents 

Since 4250 l's are equivalent to 4.25 X 10"3 MA, 
[1] = 4250/10,000 and a = 102 (moles/1.)-1. Combin
ing (9) and (7b) gives R' = ak3/k2. Substitution of R' 
into (8b) at t = 0 gives R = akj (k2 + ah). 

After an addition most computers are able to test 
whether or not a carry has occurred from the most sig
nificant digit of the sum (i.e., an overflow). This pro
vides a convenient way to send the computer to a given 
branch the proper number of times. Suppose a random 
digit is added to the number 3 and the computer is sent 
to branch 1 if a carry occurs. For random digits 7, 8, 
and 9 there will be a carry; for 0, 1, . . . 6 there will not. 
Consequently, Vi0 of the time the computer will go to 
branch 1. In the Monte Carlo model of (1), a random 
number is added to R/(R + 1), and branch 1 is tried if 
there is a carry. The ratio of number of times a carry 
occurs to number of times it does not is then [RZ(R + 
1)]/[1 - R/(R + I)] = R as required. If branch 1 is 
not taken, adding a random number to R'/(R' + 1) 
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decides between branches 2 and 3. Figure 4 is an out
line of the computer model of (1). 

Real vs. Computer Time.—After every 250 reaction 
tries, the computer produces an output card giving the 
number of each kind of molecule in the reaction 
flask. Let the time per output card arbitrarily be 
taken as one unit of computer time. In order that the 
computer model represent the real system, a plot of 
number of digits representing a molecule vs. computer 
time must coincide with a plot of concentration of that 
molecule vs. real time. The ordinate scales necessary to 
achieve this coincidence are known since 4250 digits = 
4.25 X 10~3 M. The relation between real and 
model abscissa (i.e., time) scales can be found by con
sidering the relation between real and model rate con
stants. 

FILL STORAGE WITH 
4 250 1's 

SET A = 4 2 5 0 
B = C=D = O 

-HSET COUNT 1 

A<10? I @ H STOP 

] | 
I PU NC H A1B1C1D I 

P 
R/(rV1) * RANDOM NUMBER . ^ 

OVERFLOW ? 

R'/(R'-1) • RANDOM NUMBER 
- OVERFLOW ? 

TRY A - B + C T R Y B + C - D TRY A - D 
X 

-TUPDATE A1B1C1D 

-JCOUNT = 250? Mj^ 
[COUNT= COUNT+ 1 H 

Fig. 4.—Flow chart of the Monte Carlo model of mechanism 1. 

Suppose y is a function of the variable x and of the 
parameters ax, a2, . . . an; and y' is a function of x' and 
a/, az , . . . an'. Suppose a plot of y vs. x coincides with 
y' vs. x' and that abscissa and ordinate scales also coin
cide for the two cases. If the magnitude and units of 
the parameter a,i are 

Oi = K (x units)" (y units)" (10) 

then it must be that 

Oi' = K (V units)" (y' units)" (11) 

since changing from the unprimed to the primed system 
can be considered simply a renaming of variables. That 
is, the two parameters have the same magnitude. In 
general one would not happen to choose units in which 
scales and curves could both be made to coincide simul
taneously. Suppose in this case that when the curves 
coincide, the scales are such that 1 (x unit) = r (V 
units) and 1 (y unit) = s (V units). One could trans
form to a case where (10) and (11) hold simply by in
creasing x' and y' units by factors of r and s. 

Oi' = n(rx' units)" (sy' units)" = Kr"sq {%' units)" (y' units)" 

(12) 

where Krpsq is the magnitude of a,\ in V, y' units and K 
is its magnitude in rx', sy' units. But (10) = (11) = 
(12) giving 

as (in x,y units) = a / (in x',y' units) (13) 

The same is true for the other parameters. 
In the real system the rate of A -*• B 4- C is /^1[A], 

and in the model let that of l's -»• 2's 4- 3's be k\ X 
(number of l's). This last rate also equals the number 
of successful tries of branch 1 per output card. Thus at 
t = 0 

£,'(4250) = 250[R/(R + I)] (4250/10,000) (14) 

Application of eq. 13 gives 

k\ (in computer units) = k\ (in real units) (15) 

Then using eq. 14 

(250/10,000) RI(R + 1)(output cards)"1 = 

0.0044 (min.)- 1 (16) 

1 output card = 0.6925 min. 

which is the required relation between real and com
puter time. 

In usual practice one would not be trying to con
struct a model of a system whose rate constants are 
known, but rather trying various k's to obtain best fit 
to observed concentration-time data. Then the steps in 
these last two sections would be carried out in somewhat 
inverted order. 

Results.—B concentration from the Monte Carlo 
model of (1) is compared with the integrated result (3) 
in Fig. 5. Agreement between the two is good. For 

1.8 

"T 1 1 1 

Exact,by integration 
• • Monte Carlo model 

100 200 300 400 
TIME (minutes). 

500 

Fig. 5.—B concentration in mechanism 1. 

increased accuracy the average of 4 Monte Carlo 
runs was used. The model would have required 10 
hr. computing time on an IBM 650. It was run instead 
in 45 min. on a IBM 7072 using a 650 simulation pro
gram. 

Comparison with Other Methods 

The difficulty of analytic integration of rate equations 
increases rapidly with complexity of reaction mechanism 
and becomes impossible for mechanisms that are not yet 
very complex. Further, nearly every mechanism that 
can be integrated must be treated as a separate case, 
each with its own mathematical techniques. Difficulty 
of the Monte Carlo method increases more slowly. Just 
as a complex mechanism consists of individual steps, all of 
which are essentially similar, so the Monte Carlo model 
is constructed by combining the essentially similar 
models of the individual steps. Even for the simple 
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mechanism 1, and even given the integrated form 3 and 
tables of Bessel functions, it is easier to get [B] by 
setting up and running the Monte Carlo model than by 
evaluating and plotting (3). In usual applications, 
where to fit the experimental [B] curve (3) would have 
to be plotted for varying sets of rate constants, the 
saving would be still greater. The same Monte Carlo 
program would be used each time, and the rate con
stants varied by reading in one input card. 

On the other hand, it would be difficult to get ac
curacy greater than 1% with a Monte Carlo model, and 
greater than 0.1% is probably impossible with present 
computers. This accuracy is sufficient for most rate 
studies, but where it is not a Monte Carlo model could 
give only a first approximation. 

Numerical integration of rate equations has been 
used,6 but again each mechanism requires a rather dif
ferent treatment. Accuracy varies from case to case, 
but would generally exceed that of a Monte Carlo model. 

An analog computer method which simulates chemical 
reaction with models based on electrical circuits has had 
much application in chemical engineering.6 The pur
pose of this method, like that of the Monte Carlo model, 
is the construction of concentration-time curves with
out integration of rate equations. Accuracy of the two 

(5) K. B. Wiberg and W. H. Richardson, J. Am. Chem. Soc., 84, 2800 
(1962). 

(6) T. J. Williams, Ind. Eng. Chem., 50, 1631 (1958). 

Introduction 

The addition to borazines of three equivalents of 
water, alcohols, and hydrogen halides was described 
some years ago2 and was thought to result in cyclo-
hexane-type products. However, little evidence was 
presented to support this assumption. The first ex
ample of an adequately characterized cycloborazane 
was 1,3,5-trimethylcycloborazane (prepared by Bissot 
and Parry in 1955).34 Subsequently, 1,3,5-hexa-
methylcycloborazane6 was prepared and n.m.r. studies6 

indicated that it had a cyclohexane structure. Its 
chair-shaped conformation was established by single-
crystal X-ray studies.7 

(1) For paper V in this series see D. F. Gaines and R. Schaeffer, J. Am. 
Chem. Soc, 85, 395 (1963). 

(2) E, Wiberg, Naturwiss., 36, 182, 212 (1948). 
(3) T. C. Bissot and R. W. Parry, J. Am. Chem. Soc, 77, 3481 (1955). 
(4) For a description of the nomenclature of the cycloborazanes see ref 

1 and 10. 
(5) A. B. Burg, J. Am. Chem. Soc, 79, 2129 (1957). 
(6) G. W. Campbell and L. Johnson, ibid., 81, 3800 (1959). 
(7) L. Trefonas, F. S. Mathews, and W. N. Lipscomb, Acta Crysl., 14, 273 

(1661). 

is about the same. The usual much greater accuracy 
of digital over analog machine is lost in the Monte Carlo 
method because of its statistical nature. Choice be
tween the two might often be governed by the type of 
machine available. One point strongly in favor of the 
analog method is its speed; only a few seconds of run
ning time are required. On the other hand, a particu
lar reaction either can or cannot be simulated on a given 
analog computer, but a Monte Carlo model of nearly 
any reaction can be run on nearly any digital machine 
by increasing computing time or by decreasing required 
accuracy. 

With the analog machine, variation of rate constants 
must be done by trial-and-error manual adjustment of 
potentiometers.7 Because of the greater flexibility of 
the digital machine, it should be possible to construct 
a Monte Carlo model which would make an automatic 
least squares fit of the rate constants to give best 
agreement between model and experiment. We are at 
present considering this problem. 

Acknowledgment.—The author thanks the Vander-
bilt University Computing Center and the National 
Science Foundation (NSF-G1008) for computing time 
on the IBM 650 and IBM 7072. 

(7) A combined digital-analog computer by Minneapolis-Honeywell 
which might overcome this difficulty was recently reported in Chem. Eng., 
70, 42 (1963). 

1,3,5-Triethy!cycloborazane8 and the parent cyclo
borazane910 have since been prepared by several 
methods, and two isomers of 1,3,5-trimethylcyclo
borazane1 have been separated and characterized. Un
til recently, however, few chemical properties of the 
cycloborazanes have been reported. 

Making use of the two isomers of 1,3,5-trimethyl
cycloborazane (both isomers probably are in the chair 
shape; in isomer I all three methyl groups are equa
torial, whereas in isomer II two methyl groups are 
equatorial and the third axial), it has been possible to 
demonstrate that several of the reactions are definitely 
related to the structure of the isomers. 

Experimental 
I. A New Preparation of Cycloborazanes by Reduction of Hy

drogen Chloride Adducts of 2,4,6-Trichloroborazines. A. 
2,4,6-Trichloroborazine.—In a typical preparation, 2.49 mrnoles 

(8) D. T. Haworth, Doctoral Dissertation, St. Louis University, 1959, p. 
68. 

(9) G. H. Dahl and R. Schaeffer, / . Am. Chem. Soc, 83, 3032 (1961). 
(10) S. G. Shore and C. W. Hickam, lnorg. Chem., 2, 638 (1963). 
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Isomers of 1,3,5-Trimethylcycloborazane 
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The unsymmetrical isomer II of 1,3,5-trimethylcycloborazane forms a 2-mono and 2,4-dichloro substitution 
product with hydrogen chloride at —78° and 0°, respectively. The symmetrical isomer I, however, forms a 
2,4,6-trichloro substituted product at 0°. The acid-catalyzed methanolysis of II produces a 2-methoxy product 
at 0°, and rate studies indicate that the reaction is first order in both catalyst and II. The methanolysis of I 
under the same conditions, however, results in a mixture of mono-, di-, and trimethoxy substitution products. 
Dehydrohalogenation of the 2,4-dichloro substitution product of II with trimethylamine gives nearly quantita
tive yields of hydrogen and 1,3,5-trimethylborazine, presumably via the unstable analog of cyclohexadiene, 
B3H4N3H(CH3)S. Dehydrogenation of I and II with sodium amide in liquid ammonia or trimethylamine yields 
1,3,5-trimethylborazine. 


